On the use of phylogeny-based tests to detect association between quantitative traits and haplotypes

Claire Bardel^{1,3}, Vincent Danjean², Pierre Darlu³ and Emmanuelle Génin³

¹ UMR 5145, CNRS, MNHN, Université Paris VII, Paris, France
 ² ID-IMAG, Université Joseph Fourrier, Grenoble, France
 ³ INSERM U535, Villejuif, France

Background

- $\bullet\,$ Development of molecular genetics $\Rightarrow\,$ lots of markers available within genes
- Haplotypic methods allow to use the joint information of several markers to test for association between a gene and a disease:
 - but, increase in the number of markers \rightarrow high number of haplotypes \rightarrow low power of the association test
- A solution: group haplotypes
 - different grouping methods have been developed
 - in particular, the evolutionary history of haplotypes represented by a phylogenetic tree can be used

Aim of the study

Presentation of a new method to test for association between quantitative traits and haplotypes Power study and comparison with 2 other tests by simulations

```
phenotypic values

101001...haplo 1 / 2.3 3.5 1.4

101001...haplo 2 / 0.9 1.5 3.2

011001...haplo 3 / 8.9 7.6 10.2 8.7

011001...haplo 4 / 9.4 9.9

000011...haplo 5 / 2.3 1.2

000111...haplo 6 / 0.8 1.3 4.1 2.6

000111...haplo 7 / 2.4

000111...haplo 8 / 3.1 2.5 1.1
```

The data

- Haplotypes formed by SNPs or microsatellites
- The quantitative trait value of each individual is assigned to his two haplotypes

Reconstruction of the phylogenetic tree

- Use of a parsimony method (software PAUP*) or a ML method (software PHYML)
- Rooting of the tree
 - here, the most frequent haplotype is used as the ancestral sequence

Nested analysis of the tree

- Analysis starts from the root
- At each level: a one-way ANOVA between the different groups defined on the tree is performed
- Correction for multiple testing using the permutation procedure of Ge et al, 2003 → One p-value for a tree

Nested analysis of the tree

- Analysis starts from the root
- At each level: a one-way ANOVA between the different groups defined on the tree is performed
- Correction for multiple testing using the permutation procedure of Ge et al, 2003 → One p-value for a tree

Method (2): The 2 other tests

TreeScan (Templeton et al, 2005)

- It works on an unrooted tree
- For each partition of the tree defining two groups A and B:

- 1/ Put each individual into one of the three groups: AA, AB and BB depending on his haplotypes
 - ex: H1H5 -> group AB
- 2/ Perform an ANOVA between the quantitative values in the three groups
- 3/ Compute the p-value by permutations

• Then, use the correction for multiple testing of Westfall and Young (1993)

An omnibus haplotypic test

- One-way ANOVA between all the haplotypes
- p-value determined by permutations

The simulation process

Power of the 3 methods in the 3 regions

- Additive model, DS site removed, $h^2 = 0.1$, 200 individuals
- \bullet Average power (%) over each SNP in turn considered as the DS site

	# SNPs	ALTree	TreeScan	Haplo
CARD15	13	57.6	46.5	51.7
CTLA4 clus.	17	59.8	44.3	57.3
IL13	12	77.9	59.0	75.6
mean		65.1	49.9	61.5

- For the 3 methods: higher power for the IL13 gene
- In these conditions, ALTree is the most powerful test
- $\bullet\,$ Type I errors of the three tests are between 4.3% and 5.6%

Results (2): influence of the genetic model

Comparison of the 3 methods for 3 models, $h^2=0.1$							
# times a method is more powerful than the two others:							
	ALTree	TreeScan	Haplo				
DS site removed							
Dominant	46%	17%	37%	 Analysis of the 42 loci 			
Additive	51%	5%	44%	• $h^2 = 0.1$			
Recessive	17.5%	47.5%	35%	• 200 indivduals			
DS site present							
Additive	59%	17%	24%				

- ALTree: more powerful for dominant and additive models
- TreeScan: more powerful for recessive models
- DS site present: power of the phylogeny-based methods is increased

Results (3): Influence of maxLD and DS allele frequency

Power of the 3 methods according to the maxLD

- Simulations with the DS site removed, additive model
- maxLD: highest value of LD observed with the DS site

- As expected: increase in the power of the 3 methods with the maxLD
- ALTree more powerful when the frequency of the DS allele is high
- ALTree more powerful when the maxLD is high

Power of the 3 methods according to the recurrence rate

- Simulation with the DS site, Additive model
- Recurrence rate: # of times the DS locus mutates in the tree

Power of the 3 methods according to the recurrence rate

- Simulation with the DS site, Additive model
- Recurrence rate: # of times the DS locus mutates in the tree

Power of the 3 methods according to the recurrence rate

- Simulation with the DS site, Additive model
- Recurrence rate: # of times the DS locus mutates in the tree

- TreeScan: decrease in power when the recurrence rate increases
- Haplo: No influence of the recurrence rate

Power of the 3 methods according to the recurrence rate

- Simulation with the DS site, Additive model
- Recurrence rate: # of times the DS locus mutates in the tree

- TreeScan: decrease in power when the recurrence rate increases
- Haplo: No influence of the recurrence rate
- ALTree: Influence varies with the studied gene

Conclusion

- **Development** of a new association test Implementation in our software ALTree (quantitative test available soon) http://Claire.Bardel.free.fr/software
- Study of its power: it increases with
 - the sample size the heritability of the trait (not shown)
 - the DS allele frequency the linkage disequilibrium
- Comparison with TreeScan and the omnibus haplotypic test
 - ALTree is more powerful for additive and dominant models
 - ALTree is more powerful for high DS allele frequency
 - DS removed: ALTree is more powerful when the LD with the DS site is high
 - DS present: ALTree is less dependant on the recurrence rate of the mutations than TreeScan

Methodological work

- Development of a new test based on hierarchical ANOVA
 - Study its power and compare it with the one way ANOVA, TreeScan and the haplotypic test
- Study the power of these methods when the trait is influenced by the interaction of several loci
- Study the impact of the haplotype reconstruction on the method and possibly, take into account the uncertainty in haplotype reconstruction

Application to data sets

- Replication of a study on TAFI (Thrombin Activatable Fibrinolysis Inhibitor)
 - first results: detection of the association and identification of loci reported to be involved in the determinism of the quantitative trait